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LETTER TO THE EDITOR 

The number of metastable states of a simple perceptron with 
gradient descent learning algorithm 

Elka Korntchevat 
Physikaliscbes Institut der UniversitZt Wiiaburg, Am Hubland, 97074 Wiirzburg, Germany 

Received 26 Suly 1993 ., 

Abshact. The number of metastable states of a simple perceptron with gradient descent 
learning algorithm has been calculated as a functionof the storage capacity a and the gain 
parameter p. For e #O and p > 0 an exponential large number of local "a, similar to 
the spin glasses and analogue attractor networks, has been found. 

During the last decade a lot of results have been obtained by investigating the behaviour 
of metastable states in spin~glasses [l-31 and neural networks [&lo]. 

For the Ising spin glasses using the TAP equation below T, [1,2,11] and for the 
analogue neural networks with parallel dynamics [6-91 the number of the metastable 
states increases exponentially with increasing number N '  of spins or neurons, 

The aim of the present paper is to use the statistical-mechanical approach and the 
ideas from spin"glasses and analogue attractor neural networks in the case of the 
learning problem and more precisely in the case of the perceptron [12] with gradient 
descent learning algorithm [13]. This algorithm permits one to find, by successive 
improvement, the set of weights Jj  that produce the desired outputs. The determination 
of the possible minima is performed by minimizing a cost function with respect to the 
weights. 

We consider a single-layer perceptron with N inputs and one output, and weight 
vectors J;, connecting them. The inputs are binary &= f l ,  i= 1,. . . , N, but the outputs 
can take continuous values, determined by the input-output function5 We investigate 
the casef(x)=tanh(px), where /3 is the gain parameter: 

We consider a learning problem with a'random teacher, which presents a N  many 
examples (cy,<") .  The cost function, we minimize, is of the form: 

respectively. . 

where we used the fact that for independently distributed inputs with zero' me& and 
variance one, the local fields J -  5 become Gaussian distributed in the large-N limit. 

For simplicity we~investigate ,the case Cp= f l ,  where %e values f l  are taken with 
equal probability. It is known that in this special case (targets *I and training function 
tanh(px)), the gradient descent learning algorithm can stick to the local minima, which 
appear in addition to the absolute one, present in the linear case [13]. 
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Within the gradient descent algorithm the couplings are changed according to 

We are interested in the attractors of this algorithm, for which one has A&=O. 
The number of fixed-points is given by the following expression [I, 6-91 : 

N/(N, a,  B )  = 11 dJ n WGJldet Al. (3) J i  ‘ i  

The 6(GJ imposes the constraint Gi=O, i.e. the fixed-point condition, and Idet AI is 
the Jacobian normalizing the &function. The matrix A,=aGi/aJ, is also the Hessian 
of the Lyapunov function [I41 and characterizes the local curvature of the energy 
landscape. Since we are interested only in the stable ked-points, we will restrict the 
integration only over the parametric space, where the matrix is positively definite (see 
equation (13)). 

The self-averaging quantity in the problem is not the number of metastable states, 
but its logarithm. Following the lines of considerations in [6-91 instead of the extensive 
quantity {In NfP), we calculate ln(N/), which is an upper bound of the quantity under 
consideration. Assuming that there are no correlations among replicas the upper bound 
for the expected number of fixed points coincides with the true result. 

We also simplify the expression (3) by averaging lT, S(Gi) and ldet A,[ separately, 
in accordance with [l, 4-10], since in the large-N limit most of the local minima have 
identical curvature and they become narrowly peaked. 

We calculate the average H i  8(Gi) by introducing an integral representation for the 
&function : 

where 

If in the large-N limit we introduce Gaussian variables U ’ = J - t ’ / f l  and 
8 =x * <*/fl with the following properties: 

(U;) =E J?/N=e (v i )=Cd/N=p (uW)=C xiJi/N=r ( 5 )  
i i 1 

then the average of expression (4) over 
variables up and z p ,  related by 

is given as an integral over two Gaussian 
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Imposing the constraints (5) by using &functions and introducing the variables E, P, R, 
conjugated to e,p and r, respectively, by the following identities: 

l = s m  deSim s e x p ( E ( N e - z J ? ) )  
-m -im 

m im 

1 = I-, dP = 2ni .XP(P(NP - d)) 

I=[- & J i m  E e x p ( R ( N r - T x J j ) )  
-m -rm 

for the average ( I I i  6 (Gj) ) ,  after integrating over xi ,  we finally obtain 

( F 6 ( G , ) ) = J m  deJim N G J m  dpJim N d P J m  -m d r I i m  -im NdR 
-1- -m ~~ -m -Lm 

R2 
N(eE+pP+ rR) - E  C J! +- J;' 

i 4P i 

N 
2 2 

-$In P--1n 4n+ aNI, 

Here 

(7) 

where the Gaussian measure 

and 

ciZ(u) =p(tanh(pu) i I)/cosh2(pu). 

The calculation of the determinant (det A( is more complicated. For simplifying the 
problem we consider that ldet AI is a self-averaging quantity. This is an accordance to 
the spin-glass problem [I] and to the analogue attractor neural network problem 
[6-9], where the results with and without correlations among replicas slightly differ, 
which is not essential for the general behaviour. 

Assuming self-averaging and using the identity~ 
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one can find (det A )  in the large-N limit by squaring the RHS of (lo), calculated at the 
same limit. 

Putting the expression for the determinant A,=aG,/aJ, in (10) we introduce again 
Gaussian variables lip =up = J .  r / f l  and iJp =p . e/ f l  with the properties 

If we impose constraints (11) by &functions, introducing the parameters P and 4 
conjugated to the order parametersp and f, respectively, after performing the integration 
over p, we obtain 

((detA)-’”)=I- d p r m  N & i m  -m C i l  N& 
-m -1- 

where 

and 

In equation (12) the constraint X, J?= Ne, known from the calculation of the &function, 
has been used. The restriction of the region of integration in equation (13), U =  

sinh-’(l/$)/P, comes from the requirement that det A is positive-definite (~;,~20). 
Collecting both terms (n, 6(G)) and ((det A)-’”), after using the condition for 

self-averaging and after performing the integration over J ,  for the averaged number of 
the metastable states in the large-N limit we obtain the following expression: 

<Nrp> maE,p,R.m exp(N@) (14) 

where the exponent 

R 
2 2P 

Q, = eE +pP + rR - In P + aI, - 2(pp+ FX) -7 e +In P” - 2a12. 
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The saddle-point equations for the conjugated variables E, P, R, p ,  I? can be easily 
solved and the results are 

1 P= 
2 ( ~ - ? / e )  

Finally @ becomes . ’  ’ 

1 ( ( :I 1 
2 2 

Q,=- lne+- ln  p - -  -ln p ” - -  +aI l -2aIz .  

The numerical solutions of the saddle-point equations with respect the ie 
eters e. D, r. b. f lead to the result thatthe exuonent Q, is a monotonous func 

ram- 
._ .  with 

respect to the gain-parameter p and the storage capacity a. The increase of p and a leads 
to an increase of the number of the metastable states (figure 1). The same behaviour has 
been obseived in the case of analogue attractor networks [6-91. 

Since thematrixA;,j isoftheformAy=~~g(~)5~5~, i t  canbeshownthat forp<N, 
i.e. a < 1, det A = 0, which comes from the fact that the gradient descent rule produces 
changes 0nly.N the weights Jt ,  which are in the direction of the pattern vectors and 
not perpendicular to them. This has been tested numerically for <” small, of order E, 
and a + 1 + E, and it has been observed that <N!>  also becomes very small. 

For 6xed a2 1 and small values of p the~expected number of metastable states is 
small and tends to zero as /3 tends to zero, since in this l i t  tanh(px) can be approxima- 
ted by a linear function, for which only one minimum is present (figures 1 and 2). 

Fixing p and increasing a (or the inverse) one can observe an increase of the number 
of metastable states, since no limited values for it exist (figure 2). It will be interesting 
to calculate the number of metastable states in the case of a general form of a teacher 
c’ =g(B. r/,/%%, (equation (l)), where B is a new weight-vector introducing an addi- 
tional overlap with the student weight-vector. However, this problem introduces an 
additional order parameter and an additional Gaussian integral variable in (6), which 
makes the analysis more complicated. 

The author thanks W Kinzel and M Opper for introduction to this topic and for many 
interesting and useful discussions. The author also thanks W Kinzel for critical reading 
of the manuscript and P Kuhlmanu for many useful remarks during the calculations. 
Finally the aulhor warmly thanks G Reents for his stimulating discussions and help in 
the numerical analysis during all steps of the investigation. This work is supported by 
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Figure 1. The exponent Q, (equation (16)) describing the number of metastable states, as 
a function of the storage capacity a and the gain parameter p .  

Figure 2. The exponent Q,(a=2, B ) .  When p-O,O-O, since in the linear case (linear 
transfer function) there are no metastable states. 
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